Closed-loop Auditory-based Representation for Robust Speech Recognition

نویسندگان

  • Chia-ying Lee
  • James R. Glass
  • Oded Ghitza
  • Hung-an Chang
  • Ekapol Chuangsuwanich
  • Yuan Shen
  • Stephen Shum
  • Yaodong Zhang
چکیده

A closed-loop auditory based speech feature extraction algorithm is presented to address the problem of unseen noise for robust speech recognition. This closed-loop model is inspired by the possible role of the medial olivocochlear (MOC) efferent system of the human auditory periphery, which has been suggested in [6, 13, 42] to be important for human speech intelligibility in noisy environment. We propose that instead of using a fixed filter bank, the filters used in a feature extraction algorithm should be more flexible to adapt dynamically to different types of background noise. Therefore, in the closed-loop model, a feedback mechanism is designed to regulate the operating points of filters in the filter bank based on the background noise. The model is tested on a dataset created from TIDigits database. In this dataset, five kinds of noise are added to synthesize noisy speech. Compared with the standard MFCC extraction algorithm, the proposed closed-loop form of feature extraction algorithm provides 9.7%, 9.1% and 11.4% absolution word error rate reduction on average for three kinds of filter banks respectively. Thesis Supervisor: James R. Glass Title: Principal Research Scientist Thesis Supervisor: Oded Ghitza Title: Senior Research Associate Boston University

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efferent-Inspired Auditory Model Front-End for Speech Recognition

In this paper, we investigate a closed-loop auditory model and explore its potential as a feature representation for speech recognition. The closed-loop representation consists of an auditory-based, efferent-inspired feedback mechanism that regulates the operating point of a filter bank, thus enabling it to dynamically adapt to changing background noise. With dynamic adaptation, the closed-loop...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

Computational Models for Auditory Speech Processing

Auditory processing of speech is an important stage in the closed-loop human speech communication system. A computational auditory model for temporal processing of speech is described with details of numerical solution and of the temporal information extraction method given. The model is used to process fluent speech utterances and is applied to phonetic classification using both clean and nois...

متن کامل

A Robust Reliable Closed Loop Supply Chain Network Design under Uncertainty: A Case Study in Equipment Training Centers

The aim of this paper is to propose a robust reliable bi-objective supply chain network design (SCND) model that is capable of controlling different kinds of uncertainties, concurrently. In this regard, stochastic bi-level scenario based programming approach which is used to model various scenarios related to strike of disruptions. The well-known method helps to overcome adverse effects of disr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1985